The apoptosis repressor with a CARD domain (ARC) gene is a direct hypoxia-inducible factor 1 target gene and promotes survival and proliferation of VHL-deficient renal cancer cells.

نویسندگان

  • Olga V Razorenova
  • Laura Castellini
  • Renata Colavitti
  • Laura E Edgington
  • Monica Nicolau
  • Xin Huang
  • Barbara Bedogni
  • Edward M Mills
  • Matthew Bogyo
  • Amato J Giaccia
چکیده

The induction of hypoxia-inducible factors (HIFs) is essential for the adaptation of tumor cells to a low-oxygen environment. We found that the expression of the apoptosis inhibitor ARC (apoptosis repressor with a CARD domain) was induced by hypoxia in a variety of cancer cell types, and its induction is primarily HIF1 dependent. Chromatin immunoprecipitation (ChIP) and reporter assays also indicate that the ARC gene is regulated by direct binding of HIF1 to a hypoxia response element (HRE) located at bp -190 upstream of the transcription start site. HIFs play an essential role in the pathogenesis of renal cell carcinoma (RCC) under normoxic conditions, through the loss of the Von Hippel-Lindau gene (VHL). Accordingly, our results show that ARC is not expressed in normal renal tissue but is highly expressed in 65% of RCC tumors, which also express high levels of carbonic anhydrase IX (CAIX), a HIF1-dependent protein. Compared to controls, ARC-deficient RCCs exhibited decreased colony formation and increased apoptosis in vitro. In addition, loss of ARC resulted in a dramatic reduction of RCC tumor growth in SCID mice in vivo. Thus, HIF-mediated increased expression of ARC in RCC can explain how loss of VHL can promote survival early in tumor formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Apoptosis Repressor with a CARD Domain (ARC) is a Direct HIF1 Target Gene and Promotes Survival and Proliferation of VHL Deficient Renal Cancer Cells

School of Medicine, Stanford, CA, USA Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA Deparment of Pathology, Stanford University School of Medicine, Stanford, CA, USA Deparment of Mathematics, Stanford University, Stanford, CA, USA Department of Obstetrics, Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA, USA Department ...

متن کامل

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

Targeting the loss of the von Hippel-Lindau tumor suppressor gene in renal cell carcinoma cells.

Late-stage clear cell renal carcinoma poses a formidable clinical challenge due to the high mortality rate associated with this disease. Molecular and genetic studies have identified functional loss of the von Hippel-Lindau (VHL) gene as a frequent and crucial event in the development of the malignant phenotype of clear cell renal carcinomas. Loss of VHL function thus represents a pathognomonic...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

فاکتور القا شونده به‌وسیله هیپوکسی: نقش آن در آنژیوژنز و سرطان

Angiogenesis, as the process of new vessel formation from pre-existing vessels is dependent on a delicate equilibrium between endogenous angiogenic and antiangiogenic factors. However, under pathological conditions, this tight regulation becomes lost which can result in the formation of the different diseases such as cancer. Angiogenesis is a complex process that includes many gene products tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2014